Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0880220180560090619
Journal of Microbiology
2018 Volume.56 No. 9 p.619 ~ p.627
Bacteroides sedimenti sp. nov., isolated from a chloroethenes-dechlorinating consortium enriched from river sediment
Ismaeil Mohamed

Yoshida Naoko
Katayama Arata
Abstract
A Gram-negative, anaerobic, non-motile, non-spore-forming bacterial strain, designated YN3PY1T, was isolated from a chloroethene-dechlorinating consortium originally enriched from river sediment. The strain enhanced the dechlorination of cis-dichloroethene to ethene by Dehalococcoides, especially at the early stages of cultivation. Strain YN3PY1T was the first isolate of the genus Bacteroides, obtained from animal-independent environments, and its 16S rRNA gene had the highest sequence similarity (97.1%) with Bacteroides luti JCM 19020T in the ¡®Coprosuis¡¯ clade of the genus Bacteroides. Strain YN3PY1T formed a phylogenetic cluster with other phylotypes detected from sediments and paddy soil, and the cluster was affiliated with a linage of so-called free-living Bacteroides detected from animal-independent environments, suggesting specific adaptations to sediment-like environments. The strain showed typical phenotypes of Bacteroides, i.e., polysaccharolytic anaerobe having anteiso-C15:0 as the most abundant fatty acid and MK-11 as one of the major respiratory quinones. Additionally, the strain uniquely transforms glucose to lactate and malate, has MK-12 as another major respiratory quinone, and grows at comparatively low temperatures, i.e. 10?40¡ÆC, with an optimum at 28¡ÆC. Based on the presented data, strain YN3PY1T (= KCTC 15656T = NBRC 113168T) can be proposed as a novel species of the genus Bacteroides and named as Bacteroides sedimenti sp. nov.
KEYWORD
Bacteroides sedimenti, chloroethenes, dechlorination, free-living Bacteroides
FullTexts / Linksout information
Listed journal information
MEDLINE ÇмúÁøÈïÀç´Ü(KCI) ´ëÇÑÀÇÇÐȸ ȸ¿ø